用户
 找回密码
 立即注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 3021|回复: 0

污水如何培养好氧颗粒污泥

[复制链接]


1048

主题

1140

帖子

3515

积分

超级版主

Rank: 8Rank: 8

积分
3515
发表于 2016-11-23 14:32:19 | 显示全部楼层 |阅读模式

好氧颗粒污泥是废水生物处理中的一种新技术. 与目前普遍使用的活性污泥法中的活性污泥絮体相比,好氧颗粒污泥优势在于活性污泥絮体在一定条件下生长成为颗粒,在水中沉降速度远大于活性污泥絮体,因此,采用好氧颗粒污泥处理废水,曝气池中生物浓度可大大提高,沉淀时间则可大大缩短[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. 普通活性污泥法曝气池中活性污泥浓度约为3000 mg ·L-1,沉淀时间30 min到2 h. 而采用好氧颗粒污泥技术,曝气池中污泥浓度可达10000~14000 mg ·L-1,沉淀时间只需1~3 min[11, 12, 13, 14, 15, 16]. 与普遍应用于处理高浓度废水及难降解废水的厌氧颗粒污泥相比,好氧颗粒污泥的培养时间约为1个星期到1个月,远小于厌氧颗粒污泥启动时间6个月[17]. 因此,好氧颗粒污泥技术有望为当今污水生物处理技术带来突破性的进展.

  但是,有关好氧污泥颗粒化的研究时间尚短,人们对好氧颗粒污泥的形成过程、 形成机制、 各种环境因素对好氧颗粒污泥的影响及颗粒污泥微生物学等,还缺乏深入的研究. 另外,有关好氧颗粒污泥的研究中,大部分是在实验室规模下、 采用较高有机物浓度的人工配水(如葡萄糖等)作为基质,较少利用低有机物浓度的城镇生活废水培养好氧颗粒污泥. 另一方面,城镇生活废水中含有各类污染物,COD含量较低,通常小于200 mg ·L-1. 目前这类废水的处理多采用传统活性污泥法,废水的处理效果较好,但传统活性污泥法处理系统普遍占地面积大,建设成本高,剩余污泥量大,运行费用高,而且容易发生污泥膨胀.

  本研究建立中试试验装置,利用实际城市污水培养好氧颗粒污泥,并采用共聚焦激光扫描显微镜、 X射线衍射等现代分析手段研究所培养颗粒污泥的特性,以期为好氧颗粒污泥技术的实际应用奠定基础.

  1 材料与方法

  1.1 试验装置

  中试试验采用圆柱型 SBR 反应器,上半部材质为有机玻璃,下半部材质为钢,内部刷漆防腐. 反应器内径为 1 m,有效高度为4.5 m,有效容积均为 3.5 m3. 采用空气压缩机供气,通过流量计控制曝气量,曝气量为12.5 m3 ·h-1,反应器内表面气体流速为 0.44 cm ·s-1. 反应器内表面气体流速定义如下:

  反应器内表面气体流速(cm ·s-1)=反应器内的气体流量(m3 ·s-1)/反应器的截面积(m2) ×100

  试验装置见图 1. SBR 单周期循环时间为180 min,其中进水8 min,曝气160 min,沉淀6 min,出水6 min; 整个运行程序利用微电脑时控开关控制. 人工模拟废水由计量泵从反应器上部泵入反应器内,出水从反应器中间的排水口排出,排水比为50%. 在3 h的循环周期中,反应器中的DO浓度始终保持在2 mg ·L-1以上.

20140531-1.jpg   

图 1 中试装置示意 1.原水水池; 2.进水泵; 3.微电脑时间控制器; 4.空气压缩机; 5.空气流量计; 6.曝气头; 7.出水泵; 8.排水口

  1.2 接种污泥与培养

  接种污泥为实际污水处理厂二沉池回流污泥.该污泥呈黄色松散絮状结构,性质见表 1. 取种泥曝气24 h后,沉淀30 min,排出上清液,使接种污泥量为总体积的50%,再注入培养污水至正常水位. 接种后,反应器内污泥浓度约为3000 mg ·L-1.

  试验用水采用污水厂实际城市污水,进水水质如表 2.

2016111614141850.jpg  

 表 1 接种污泥的性质

2016111614143015.jpg  

 表 2 进水水质

  1.3 分析方法

  (1)常规分析

  COD、 NH+4-N采用快速密闭分光光度法,NO-2-N、 NO-3-N、 TP、 混合液悬浮固体浓度(mixed liquor suspended solid,MLSS)、 混合液挥发性悬浮固体浓度(mixed liquor volatile suspended solid,MLVSS),出水悬浮物(suspended solid,SS)浓度均采用标准方法[18]测定. 采用 Olympus CX31光学显微镜和配套的Olympus 数码相机进行图像采集.

  (2)CLSM分析

  冷冻切片:将反应器中的好氧颗粒污泥取出,用PBS清洗,置于冷冻介质Tissue-Tek OCT (Miles,Elkhart,IN)中,-40℃冷冻一夜. 将冷冻的颗粒污泥在旋转冷冻切片机(CM 1510-Cryostat,Leica,Germany)上切成50 μm厚度的切片[19].

  CLSM分析:采用核酸染料SYTO9(25 mmol ·L-1,Molecular Probe,Eugene,OR)对切片中的细菌进行染色,采用凝集素荧光染色剂ConA-TRITC(250 mg ·L-1,Sigma)对切片中的EPS进行染色. 染色20 min后,用PBS清洗切片样品. 将清洗后的染色切片样品置于共聚焦激光扫描显微镜(CLSM,LSM 5 Pascal,Zeiss,Jena,Germany)下观察[19, 20].

  (3)好氧颗粒污泥无机物组成分析

  采用X射线衍射(XRD)分析仪分析好氧颗粒污泥中无机物的组成. 具体方法为:先将样品在550℃灼烧30 min以上,冷却,干燥,然后将样品研磨成粉末,利用Bruker D8 Advance X-ray powder diffractometer采集图谱(Cu-Kα射线,LynxEye检测器,光管电压40 kV,电流40 mA,2θ测角范围10°~80°,步长0.02°,扫描速度为0.3 s ·步-1),Eva XRD Pattern Processing software (Bruker Co. Ltd.)进行数据分析.

  2 结果与分析

  2.1 好氧颗粒污泥的形成

  在颗粒污泥形成过程中,用光学显微镜对反应器中颗粒污泥的形态进行了观察,其变化如图 2所示. 可见,随着培养时间的进行,分散的絮状污泥逐渐转化成为细小不规则的小颗粒,然后慢慢长大为个体较大、 形状饱满的较大颗粒,最终形成椭球形、 边界清晰的深褐色成熟好氧颗粒污泥. 反应器中颗粒化污泥所占的比例逐渐增加,由40 d时的20%左右逐渐增加至100 d时的85%左右.

20140531-2.jpg  

 图 2 好氧颗粒污泥的形态变化

  好氧颗粒污泥培养过程中,反应器的沉降时间从30 min逐渐降低到6 min. 减少沉降时间过程中,由于过量排泥,反应器中的污泥浓度(MLSS)从2.13 g ·L-1降低到0.94 g ·L-1(图 3),接着颗粒污泥能够得到更多营养物质用于生长,反应器内的污泥浓度随着颗粒化进程逐渐增加,MLSS开始缓慢增加. 运行至 40 d时,颗粒粒径较以前增大,基本趋于成熟. 好氧颗粒污泥粒径可达1.0 mm左右. 此时反应器中MLSS浓度在1.2 g ·L-1左右.

  污水厂的进水为河水. 第75 d时,由于大量降雨,河水中的悬浮物急剧增加,使反应器中的MLSS浓度随之增加; 降雨停止后,反应器中的MLSS浓度回落至正常.

20140531-3.jpg   

图 3 中试SBR反应器中MLSS、 MLVSS随运行时间变化

  2.2 对污染物的去除

  中试反应器出水SS的浓度变化如图 4所示. 随着运行时间增加,中试反应器中颗粒污泥所占比例越来越高,反应器出水中的SS浓度逐渐降低. 但是,与污水处理厂出水一级A标准相比(出水SS<10 mg ·L-1),好氧颗粒污泥中试反应器由于沉降时间短(6 min),导致出水SS仍偏高(平均为60 mg ·L-1).

20140531-4.jpg   

图 4 中试SBR反应器中出水SS随运行时间变化

  对COD、 TN、 TP的去除结果见图 5. 反应器稳定运行后,出水COD均维持在50 mg ·L-1以下,较好地实现了COD的去除; 出水NH+4-N小于2 mg ·L-1,实现了绝大部分NH+4-N的转化,达到了实际污水处理厂的NH+4-N出水指标; 随着污泥颗粒化的进行,出水TN的浓度逐渐降低,3个月后出水TN小于15 mg ·L-1. 出水COD、 NH+4-N、 TN均达到一级A排放标准. 好氧颗粒污泥反应器对TP 的去除为50%左右,在系统运行的末期阶段,出水TP维持在0.57~1.09 mg ·L-1范围内.

20140531-5.jpg   

图 5 中试SBR反应器对COD、 N、 P的去除

  好氧颗粒污泥反应器运行的完整周期为:进水8 min、 曝气160 min、 沉淀6 min、 出水6 min,没有缺氧和厌氧阶段. 在3 h的循环周期中,好氧颗粒污泥反应器稳定运行时对TN和TP的去除率均为50%左右. 图 5表明,好氧颗粒污泥反应器能够在3 h的周期中,实现同步N 的硝化和反硝化、 TP的去除. 但由于缺乏缺氧和厌氧阶段,虽然出水TN和NH+4-N达到一级A排放标准,但仍可在未来的优化研究中,在周期中增加缺氧或厌氧阶段,进一步提高TN、 TP去除率.


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则